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1 Synopsis
Although the power law has been broadly accepted in measurement and air infiltration standards,
and in many air infiltration calculation methods, the assumption that the power law is true over the
range of pressures that a building envelope experiences has not been well documented.  In this
paper, we examine the validity of the power law through theoretical analysis, laboratory
measurements of crack flow and detailed field tests of building envelopes.  The results of the
theoretical considerations, and field and laboratory measurements indicate that the power law is
valid for low pressure building envelope leakage.

2 Introduction
The functional form of the pressure flow relationship for building envelopes has been a topic of
debate.  Historically, some practitioners supported a power law equation [1] and others a quadratic
form [2].  The power law formulation has gained almost universal acceptance for building envelope
leakage in:
• measurement standards for building envelopes, e.g., [3], [4], [5],
• ventilation standards, e.g., [6] and [7], and
• many infiltration models.
Many of these standards and calculation procedures use the power law function to extrapolate
from data measured at high pressure differences down to the pressures experienced by the building
envelope for natural infiltration. This paper will examine how well the power law and quadratic
functions can be extrapolated successfully to lower pressures by using theoretical considerations,
laboratory and field measurements.  In addition, this paper examines how flow through individual
leaks combine when determining whole building envelope flows.  Test results will be presented for
whole house pressurization at the low temperature differences and windspeeds required to reveal
the low pressure leakage function.  Additional crack flow measurements performed by other
authors and flow through furnace flues under controlled laboratory conditions will also be used.
The envelope and flue experiments were developed to concentrate on improved measurements at
low pressure differences and flow rates.
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3 Pressure - flow relationships for crack flow
3.1 Quadratic form
The pressure-flow relationships for fully developed laminar flow and turbulent (orifice) flow give
the following limiting cases for crack flow:

where Q = flow rate [m3/s],  ∆P = pressure difference across crack [Pa], K1 [m3/sPa] and K2

[m3/sPa0.5] are flow coefficients.  Equation 2, for fully turbulent orifice flow, has been used often in
ventilation modeling, as early as 1907 [8] and still in use today [9].  The laminar and turbulent
equations can be combined into a quadratic form [10] such that,

where A [(Pa s)/m3] is the flow coefficient for fully developed laminar friction losses and B [(Pa
s2)/m6] is the coefficient for entry, exit and turbulent flow losses.  Inconveniently, Equation 3 gives
the pressure drop for a known flow rate.  For ventilation studies a correlation is needed to give
flow rate as a function of the applied pressure difference due to wind, stack and mechanical
ventilation effects.  Equation 3 can be expressed in a more useful form as

In Equation 4 only the positive root is required because all real flows are positive.
Standard fluid mechanics principles have been used [11] for flow between parallel plates to
determine A and B, such that

where µ [kg/ms] is dynamic viscosity, L [m] is the width of the crack, d [m] is the gap thickness, z
[m] is the distance in flow direction (crack length), ρ [kg/m3] is the fluid density and Y is a factor
that depends on the crack geometry.  The following example values were given in [11], using
empirically determined values of Y = 1.5 for a straight crack, 2.5 for an L-shaped crack and 3.5 for
a double bend crack. The predictions for A and B were compared to measured data in [11] for
various crack geometries with errors typically less than 20%.  They found that values of A and B
determined by least squares to Equation 4 gave a better fit than the theoretical values to their
measured crack flow data for some simple crack geometries over a Reynolds number range of
approximately 6000 to 60000.
Additional work for flow in pipes [12] summarized the work of previous authors ([13], [14] and
[15]) on linearized Navier-Stokes equations to estimate A and B as:
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where D is the pipe diameter, and m is a factor to account for the linearization of the Navier-Stokes
equations.
The quadratic equation allows the flow to vary from laminar to turbulent over a range of flow
rates.  However, this equation is based on combining fully developed laminar and turbulent flows
and entry and exit losses.  This can be physically unrealistic for the convoluted crack geometries
typical of building leaks in which the flow is rarely fully developed because the flow has to begin its
development after each sharp change of direction.  In addition, the pressures across building leaks
are not steady because of wind turbulence.  This results in changing driving pressures for the flow
such that the flow is being accelerated or decelerated almost all of the time.  The fluctuations in
flow and pressure further reduce the possibility of fully developed flows existing in building leaks.

3.2 Power law form
The power law relationship has the form

where C [m3/sPan] is the flow coefficient and n is the flow exponent.  The flow exponent has the
limiting values of 0.5 and 1 for fully developed turbulent and laminar flows respectively.   A
dimensionless pressure has been developed [12] that relates the ratio of total pressure drop to the
critical pressure drop that occurs when the pressure drop due to fully developed laminar flow is
equal to the pressure drop from combined entry, exit and flow acceleration effects.  This parameter,
S, has been related to the power law exponent, n , which allows the power law exponent to be
related to the crack geometry, such that

where A is the cross sectional area of the crack. The flow can then be expressed as a function of S:
nS

m

z16
Q φ

πν
= 11

where ν is the kinematic viscosity and φ is a power law factor depending on the exponent, n.
Temperature and pressure corrections for the flow coefficient, C, can be made as follows (some of
which was suggested previously [16]).  From dimensional analysis it can be shown that

where ρ is the fluid density and µ the viscosity.  If C is evaluated at some reference temperature,
Tref, and pressure, Pref at which C = Cref, µ = µref and ρ = ρref then
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Equation 13 gives the correct behaviour at the flow regime limits with C independent of viscosity
for orifice flow (n=0.5) and independent of density for laminar flow (n=1).
For air over the temperature range typically encountered in buildings ( -40oC to +40oC ) the
dynamic viscosity can be assumed to be linearly dependant on temperature to within a few percent
so that

Assuming air behaves like an ideal gas over this range means that

Substituting Equations 14 and 15 in Equation 13 gives

Equation 16 allows correction of the flow coefficient, C, for changes in barometric pressure and
temperature.  The fan pressurization tests discussed later have had the measured values of C
corrected to a reference temperature of 20oC and a barometric pressure of 90 kPa (This barometric
pressure is lower than a standard atmosphere because the tests were conducted in Edmonton,
Alberta which is about 700 m above sea level).  These corrections allow direct comparison of fan
pressurization test results measured under different ambient conditions.
The temperature correction is usually small for the distributed envelope leakage of a building
because typical values for the flow exponent are close to 2/3.  Using this value of n makes
Equation 16 independent of temperature which means that the flow coefficient, C, is independent
of temperature.  This makes the power law formulation simpler to use than other
formulations at different conditions from those at which flow coefficients were measured.
For larger individual leakage paths, such as fireplaces and furnace flues, the flow exponent is
typically 0.5, in which case the temperature correction in Equation 16 is significant.  For example, if
Tref = 293 K and T = 253 K, then the flow coefficient is reduced by about 7%.  This becomes more
important for heated flues (e.g., when furnace burners are on) where the operating temperature is
about 100K greater than the reference temperature.

4 Developing flow for a single crack
Given typical building crack geometries and flow rates the flow in building leaks is likely to be
developing flow.  Some researchers suggest that the flow exponent, n, is constant over a wide
range of flow rates and pressure differences for cracks similar in geometry to building leaks.  For
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example, for laminar flow in the entrance region of smooth circular tubes [17].  It has been
proposed [18] that the results in [17] imply an exponent of n = 2/3 for this entrance region
developing flow regime.  This is also a typical value for n found from pressurization testing of
houses.  Although tempting, this does not prove that flow in cracks in building envelopes is
undeveloped laminar flow because the developing flow regime in [17] was only dominant over an
entry length of less than one diameter.  It remains an intriguing coincidence, however, and requires
further research.  Experiments on parallel flat plates [19] have shown that n is constant over a very
wide range of flow rates and pressures for a given crack geometry.  The tests were performed from
1 to 50 Pa, encompassing the typical values experienced by a building envelope.
Other work has found that the power law exponent, n, may vary with flow rate.  Tests of circular
capillary tubes with length to diameter (aspect) ratios ranging from 0.45 to 17.25 found that n
depends on aspect ratio for laminar flow where ReD < 2000 (ReD is Reynolds number based on
tube diameter, D) [20].  Most building leakage sites fall into this category.  For example, a 1 mm
diameter crack with orifice type flow will have a ReD ≈ 85 for 1 Pa pressure drop and ReD ≈ 400
for 10 Pa pressure difference.  The capillary tube measurements showed that at high aspect ratios
the flow became more laminar and n approached 1, while at low aspect ratios the entrance effects
were more dominant and n approached 1/2.

5 Flow through arrays of cracks
Previous work [11], [19] and several other researchers has concentrated on flow through an
individual crack or cracks in series.  However, in a real building the total leakage is the sum of
many individual cracks of differing flow characteristics in series and parallel with each other that
are distributed over the building envelope.

5.1 Parallel Cracks
The flow may be modeled as a parallel array of cracks.  For laminar flow

where ∆PL is the pressure drop across the laminar flow crack, RL is the flow resistance and QL is
the flowrate.  Similarly, for orifice like cracks

where ∆PO is the pressure drop across the orifice flow crack, RO is the flow resistance and QO is the
flowrate. For cracks in  parallel an electrical analogy is to have the flow resistances in parallel such
that

Substituting Equations 17 and 18 in Equation 19 and using Equation 20 gives
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Equation 21 expresses the relationship between total flow and total pressure drop in terms of
combined laminar and orifice type leaks in parallel.

5.2 Series cracks
This flow is equivalent to inlet and exit turbulent flow losses in series with fully developed laminar
flow.  This is the same as the quadratic flow discussed earlier and advocated by some researchers
[2].  The laminar and orifice type flows are described by Equations 17 and 18.  In this case the
flows are the same and the pressures add so that

     OLtotal QQQ ==    and      OLtotal PPP ∆+∆=∆ 22,23
and the pressure drop can be written in terms of the two types of flow

2
O

2
OLLtotal QRQRP +=∆ 24

Equation 24 can realistically only be applied to a single crack whereas Equation 21 can be applied
to an array of cracks.
The different behaviour of power law, series resistance and parallel resistance crack flow equations
is shown in Figure 1.  The logarithm of pressure and flowrate are plotted in Figure 1 to better
distinguish between the different equations.  The power law equation plotted in Figure 1 appears as
a straight line with a constant slope due to its constant exponent (in this example the exponent
value was chosen to be n = 2/3).  RO and RL for the resistance crack flow equations were found by
fitting to the power law relationship at 1 Pa and 10 Pa because this is the typical pressure range
experience by building envelopes due to natural wind and stack effects.  For the parallel cracks:
RO = 51.0 and RL = 184.9 and for the series cracks: RO = 24.65 and RL = 19.45.  Figure 1 shows
how the series cracks become more like laminar flow (slope = 1 on this log-log plot) at low flow
rates and orifice flow (slope = 0.5) at higher flowrates.  For parallel cracks the reverse is true with
orifice flow dominating at low flow rates and laminar flow at higher flowrates.  Over the range of
interest for air leakage (1 Pa to 10 Pa) there is very little difference between the three methods.
This is partly because all three methods were chosen to be equal at 1 Pa and 10 Pa.  If the methods
had been equated over a different range larger differences over the range of interest would be
observed.
The relationships illustrated in Figure 1 show that a combination of series and parallel leaks in an
experiment may result in a pressure-flow relationship that fits a power law type equation even
though the dominant flow regimes in each individual leak may change over the range of
experimental pressures and flow rates.

6 Low pressure fan pressurization tests
In a real building there are cracks of many geometries that include both series and parallel leaks.
To determine which crack flow method is the best for describing real building leakage, experiments
have been performed on full size buildings using the method of fan pressurization testing.  The
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buildings were tested with the large holes (e.g., furnace flues) sealed to observe pressurization test
results for arrays of parallel and series cracks.  The tests were repeated with flues open to look at
combining the small cracks in the building envelope with large holes.
Standard methods for fan pressurization exist [3] and [4].  Both standards have recommended
values for the pressure differences at which to take measurements.  These pressure differences
cover a range of 15 to 50 Pa for CGSB tests and 12.5 to 75 Pa for ASTM tests.  Most of the time
the actual pressures caused by wind and temperature difference (stack) effects on a building will be
considerably less than 10 Pa.  It is a fair question to ask if test results from high pressures may be
extrapolated to the lower pressures that a building envelope usually experiences, because at lower
flow rates the flow characteristics of the leaks may be different.  This would imply that a different
flow coefficient, C, and flow exponent, n, apply at the low pressures that a building experiences
due to natural conditions than at the elevated pressures of a fan pressurization test.
For this study, fan pressurization tests were conducted at the Alberta Home Heating Research
Facility (AHHRF) located south of Edmonton, Alberta, Canada. The houses were unoccupied and
the fan pressurization test system was automated, which allowed over 5,000 fan pressurization
tests to be performed.  Windspeed, wind direction, and ambient temperature data were taken from
meteorological towers at the test site.  Pressure and flow rate measurements were taken over 15
seconds (at about 10 samples per second) and averaged for each data point.  The uncertainty in the
measured flows is estimated to be 0.001 m3/s.
The indoor-outdoor pressure difference was measured using a pressure averaging manifold that
had a pressure tap on each wall of the building. Offset pressures due to stack and wind effects with
the fan not in operation were measured at every data point.  A damper was closed over the fan
opening for each offset reading because the fan opening can change the pressure distribution of the
building significantly.  The data shown in the following figures were chosen from tests with low
windspeeds because increasing windspeed tends to increase the scatter in the measured data due to
differences in the wind induced envelope pressures between the offset and measurement.  For these
tests, the uncertainty in the envelope pressure measurement is estimated to be 0.1 Pa.
Figure 2 shows the results of a typical test in a house with very little envelope leakage both with
and without an open 15 cm diameter furnace flue with a 7.5 cm diameter orifice at the bottom
(House #1 at AHHRF).  The value of flow exponent (n = 0.56) with the flue open is lower than
with the flue closed (n=0.73) because the flue flow exponent is about 1/2, and performing a test
with the flue open will bring the value of the flow exponent for the whole building closer to 1/2.
Figure 3 shows the results of a test performed in House #2 at AHHRF with a 15 cm diameter
furnace flue with a 7.5 cm diameter orifice at the bottom. Curves showing the least squares fitted
power law and the quadratic leakage function are also shown in Figures 2 and 3.  The quadratic
was matched to the least squares power law at 1 and 100 Pa to determine A and B for Equation 3.
Matching at these extreme values (rather than, for example, 5 and 50 Pa or by least squares)
minimizes the differences between the extrapolations of the two methods to higher and lower
pressures. The results shown in Figures 2 and 3 show that the power law formulation works well
for houses with an array of small cracks as well as in houses with additional large holes (in this case
a furnace flue).
A significant observation to be made from the results of these tests is that the relationship between
flow rate and pressure difference does not change over the range of values tested.  There is no
observable trend towards more laminar flow at low flow rates and pressures (i.e. n approaches 1)
or more turbulent flow at higher values (i.e. n approaches 0.5) or vice-versa.  This shows that the C
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and n derived from blower test results in the range of 10 to 50 Pa are true constants describing the
building leakage for the purposes of ventilation calculations.  The power law fits the data well
because the leaks are relatively short and convoluted for the building envelope.  This means that the
flows are never fully developed.  In addition, a building envelope is a combination of parallel leaks
and series leaks that when combined can result in power law behaviour (as shown above).  On the
other hand, the quadratic function attempts to make the leakage function more laminar at low flow
rates and more turbulent at high flow rates and this trend is not observed in the data.  These results
also imply that tests at higher pressures of the CGSB and ASTM standards can be safely
extrapolated to determine the leakage characteristics of a building for the pressure range that a
building actually experiences.

7 Furnace flue leakage - a single well known leak
Except for open doors and windows, the furnace flue is usually the largest single leakage site in a
building envelope.  It is also the easiest to define in terms of size, shape and location.  Laboratory
tests were performed on a furnace flue typical of Canadian housing, consisting of 5 meters of 15
cm I.D. double walled pipe (Class B vent), with a raincap at one end of the pipe and a sharp edged
inlet at the other.  The laboratory tests were performed under controlled conditions to reduce
external temperature and pressure fluctuation effects on the measurements.  The flue was tested
horizontally to eliminate any contribution to the flow due to buoyancy caused by temperature
differences in the laboratory.  When furnaces, boilers or fireplaces are in operation, the temperature
(and composition) of flue gasses are changed.  Section 3.2 discusses how the flow coefficient
changes with temperature so that flue flows can be estimated under operating conditions.
A settling chamber consisting of a one meter cube partially filled with filter material was placed at
each end of the flue.  The pressure difference between these chambers was the driving pressure for
flow through the flue.  An ASME standard orifice flow meter with flange taps was placed upstream
of the flue to measure the flow rate.  Because a large range of flow rates was covered, several
different orifices were used to reduce errors due to low Reynolds number effects.  Air was drawn
through the flue using a centrifugal fan on the outlet to reduce fan turbulence effects.
In order to obtain reasonable results below 1 Pa it was necessary to use sensitive pressure
transducers (the ones used in these experiments had a range of only 75 Pa or about 0.25 inches of
water), make very careful calibrations, and to correct for the offset pressures measured at zero
flow.  The offset pressures were measured at each data point to account for any zero drift in the
instrumentation.  A purpose built integrating voltmeter was used to time average the pressure and
flow measurements.  An averaging time of 100 seconds was found to remove any unsteady
contribution and produce repeatable results.
The flue was tested for both regular operation and backdraughting i.e. forward and reversed flow.
The results are shown graphically in Figures 4 and 5.  The power law relationship was fitted by
least squares to the data and is indicated by the straight line in each figure.  Both data sets show
that single values of C and n describe the flow over a wide range of pressures and flow rates.  A
least squares fit to the data gives values of C and n:

C = 0.0137,  n = 0.54  forward flow
C = 0.0118,  n = 0.54  reversed flow
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The exponent, n, is the same in both cases, but the leakage coefficient C, is 13% less for
backdraughting (reversed flow) most likely due to the change in flow geometry through the
raincap.  Using this measured value of n, together with the appropriate values of ν, z, m and φ,
Equations 10 and 11 predict C = 0.0127.  This shows that the theoretical power law formulations
are good at estimating the flow coefficients.

Figures 4 and 5 also include a curve representing the quadratic relationship, where the flow
coefficients A and B were found by calculating flow rates at 0.1 and 10 Pa and solving the two
resulting equations.  The tendency of this quadratic relationship to describe the flow as more
laminar at low flow rates and more turbulent at higher flow rates can be seen by comparison with
the reference lines indicating a slope of 1.0 (laminar flow) and a slope of 0.5 (turbulent flow).
There is no clear transition from laminar to turbulent flow (like that  suggested by the quadratic
equation) in the measured data.  This transition may have been expected because the Reynolds
number has a range from approximately 600 at a flow rate of 0.001 m3/s to over 30,000 at 0.05
m3/s.  This change in exponent is not seen because the flow is never fully developed for the whole
flue and the entry and exit losses have a square root of pressure relationship.  For Re ≈ 600 the
length of pipe required is 18 pipe diameters (2.7 metres) for fully developed laminar flow.
Therefore approximately one half of the flue length could contain fully developed laminar flow.
Similarly at higher Reynolds numbers (Re ≅ 30,000) the flow in the flue is not all fully developed
turbulent flow.

At flow rates less than 0.002 m3/s there appears to be a small change in slope where the
slope is increasing with decreasing flow rate, indicating that the friction factor loss term is
significant and not constant with flow rate i.e. there is more laminar flow friction factor
contribution.  This situation occurs with flow in either direction.  It should be noted that this occurs
at a pressure difference of less than 0.1 Pa (which is extremely difficult to measure) and is
somewhat obscured by uncertainty in the measurements, and that steady flows of this magnitude
do not occur in building ventilation due to fluctuations in wind induced pressures.  In addition, any
mean flow generated by a 0.1 Pa pressure difference would be insignificant in an air infiltration
analysis.

These results show that the power law can be applied to a single large leak over a wide
range of pressures, particularly the pressures driving natural ventilation in houses.

8 Conclusions
The power law has been compared to the quadratic formulation for field and laboratory
measurements of flows though building envelopes, and the theoretical backgrounds have been
discussed.  The power law was found to better represent the relationship between pressure and
flow for buildings with small cracks only, combinations of the small building envelope cracks and
large holes (a furnace flue) and laboratory measurements of furnace flues.
The following are key  points developed in this paper:
• The quadratic formulation of laminar flow (Q∝∆P) at low flows and turbulent flow (Q∝∆P2)

at high flows is not valid for combinations of series and parallel leaks (as found in real building
envelopes) and the power law is a balance between the two possible extremes of all series and
all parallel leaks.

• Experimental and theoretical evidence shows that a power law function is appropriate for
developing flow in cracks.  Because the flow in building leaks is mostly developing flow, this
evidence therefore shows that the power law should work well for building envelope leakage.
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• House pressurization tests have shown that the power law is valid over the range of pressures
typically experienced by a naturally ventilated house.

• Laboratory experiments on a furnace flue have shown that the leakage coefficient, C, and
leakage exponent, n, can be considered independent of flow rate, Q, and pressure difference, ∆
P, for a single large leak as well as the array of smaller cracks in the building envelope. Below
0.1 Pa the measurements showed a slight trend to wards more laminar flow, however, these
low flows are insignificant in air infiltration calculations, and the measurement uncertainties are
large.

• Dimensional analysis shows that the power law formulation has simple temperature and
pressure corrections, and gives flow coefficients that are insensitive to air temperature for most
building envelopes.  This makes the power law easier to use than other methods for air
infiltration calculations at temperatures different from the measurement conditions.

These results imply that the assumption of a power law relationship used by many
standards and measurement procedures is valid.  In addition, extrapolation of results from
tests at high pressures to those typically experienced by a building envelope does not
introduce a bias in infiltration predictions.
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